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Abstract  

We show that the topological charge of the n-soliton solution of the sine-Gordon equation n[~b] = 
(1/2Jr)if dx 8x~P] is related to the genus g > 1 of a constant negative curvature compact orientable 
surface described by this configuration. The relation is n = 2(g - 1), where n = 2v is even. The 
moduli space of complex dimension Bg = 3(g - 1) corresponds precisely to the freedom to choose 
the configuration with n solitons of arbitrary positions and velocities. We speculate also that the 
odd soliton states will described the unoriented surfaces. 
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1. I n t r o d u c t i o n  

The sine-Gordon equation [ 1,2] 

t ~ t t  - -  ¢ ~ ) x x  = - -  sin ~ ,  (1.1) 

enjoys a great importance in physics: 

(a) In the lagrangian formalism it presents spontaneous breaking of the discrete Z symmetry 

~ ~ + 2~rk and exhibits the attendant soliton and multisoliton phenomenon. The 
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single static soliton is given as solution of the first-order (Bogomolny) equation; if 
v(, t , )  = ½w2(,t ,) ,  

q~'(x) ~- W ( ~ )  = 2(sin ½q~) (1.2) 

has as solution the profile 

• (x) = 4 arctg exp(x - x0). (1.3) 

(b) The sine-Gordon equation has auto-Bgicklund transformation [3] which makes it pos- 
sible to obtain the general n-soliton solution [4]. The theory is exactly soluble also 

by the inverse spectral transform method [5]. The general solution contains multi- 
ple soliton/antisoliton configurations, as well as breathers (soliton-antisoliton bound 

states) and background "noise". The quantization is factible [6,7] and indeed the for- 
mulas of  the WKB approximation are already exact [8]. 

(c) The quantized sine-Gordon theory is equivalent to the massive Thirring model [91; 

in fact, this duality, already conjectured by Skyrme [10], is the first case found of 
bosonization of field theories with fermions. Explicit soliton operators in terms of the 

field were also first exhibited here by Mandelstam [ 11 ], an example of  the later 
much studied vertex operators. The quantum theory can also be made supersymmetric 

[121. 
(d) The discrete Z symmetry mentioned above can be seen as a residual o f  the conformal 

invariance of the (free) wave equation in 1 ÷ 1 dimensions, namely ~ n  - ~xx = 

0, which is B~,icklund-transformable into the conformal invariant Liouville equation 

&tt - ~xx  = exp q~ (see e.g. [13]). 
(e) The sine-Gordon theory can be also seen as the non-linear sigma model on the sphere 

S 2 [7,14], and therefore it is the simplest of the ~r-models in 1 ÷ 1 which are exactly 

integrable, reflecting perhaps the fact that the na~'ve 0 ÷ 1 "or-model", the free motion 
on the sphere S n, is superintegrable [15]. 

All this enhances the importance of the sine-Gordon system as a toy model for some 
desirable properties of  realistic theories such as duality, bosonization, supersymmetry and 
softly broken conformal invariance [13]. 

In this paper we focus our attention in the original motivation for the appearance of the 

sine-Gordon equation, namely Eq. (1.1) in light cone (characteristic) coordinates is precisely 
the equation which describes the classical surfaces of  constant negative curvature (Enneper, 
ca. 1880). Since the compact representants of  these surfaces are topologically classified by 

the genus g > 1, and also the manifold of solutions of  Eq. (1.1) falls into classes labeled 
by the topological charge 

q(q~) = n(qS) = (1/2 )f xdx = (1/27r){q~(+cx~, t) q ~ ( - ~ ,  t)}, (1.4) 

it is just natural to relate the two topological invariants. The resulting relation is ex- 
plained in Section 3, including the concordance of the moduli space of these surfaces 
under analytic transformations with the initial positions and velocities of  the n-soliton 
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configuration. But first in Section 2, we elaborate a bit on the geometry of the equation and its 

solutions. 

2. Surfaces of negative curvature 

A surface E embedded in ordinary space ~3 with gaussian curvature K < 0 everywhere 

has two asymptotic directions in each point, separating the regions of  positive and negative 
normal curvature K (see e.g. [3]). Taking coordinates u, v, parametrized by the arc-length, 

along these directions, the metric becomes 

ds 2 = du 2 + 2 F ( u ,  v ) d u d v  + dv 2, (2.1) 

where F is the cosine of the angle • of  parametric lines, 

F(u, v) = cos q~(u, v), (2.2) 

all information on the surface is encoded in the function F. It is easy to prove that these 

coordinates can be taken throughout the surface; this is called a "Chebichef net" on the 
surface [ 16]. 

The gaussian curvature is easily calculated: 

K = (1/(1 - F2))[Fuv + FFuFv/(1 - F2)] (2.3) 

or in terms of the q~ angle 

~ , v  = - K  sin q~, (2.4) 

where K is the gaussian curvature. If  K is a negative constant (e.g. K = - 1 / a  2, say), this 

is of  course the sine-Gordon equation (1.1) in light cone (or characteristic) coordinates, for 
a = l ,  

u = l ( t  -+- x),  v : l ( t  - x).  (2.5) 

For this reason, Eq. (2.4) was considered by Bianchi "l 'equazione fondamentale di tutta 
la teoria delle superficie pseudospheriche" (quoted by Coleman [6]). 

On the other hand the oriented surfaces of  negative curvature, which are Riemann sur- 
faces, are perfectly well known and classified (see e.g. [ 17,18]): there is the universal model, 
in the form of a simply connected space (with the topology of the plane), which is usually 
presented in three forms [17]: 
(a) The Minkowski model: the upper sheet H + of the two-sheeted hyperboloid in ~3 with 

the inherited metric from the + + - m e t r i c  in the ambient space ~3. 
(b) The Poincar6 disc A, which is a stereographic projection of the former from the vertex 

of the lower hyperboloid, 

A = {Z E Cllzl < 1}; ds 2 = 4(dx 2 q- dy2)/(1 - -  I z l 2 )  2 .  (2.6) 
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(c) The upper half plane U (Klein model): 

U = {z e C I Im z  > 0}; ds 2 = (dx 2 + dy2 ) / y  2. (2.7) 

H + --- A = U are connected simply connected Riemann surfaces of  constant negative 

curvature (=  - 1 by the given metric). For a detailed description of these surfaces in relation 
to chaotic motion see [21]. 

Any other Riemann surface of  the conformal class K < 0 is obtained by quotienting by 

a subgroup G of  the modular group M, which is a discrete automorphism group 

Z = U / G ,  G C M = P S L ( 2 ,  Z). (2.8) 

In fact, there are three types of  these surfaces: 

(1) The simple connected case, say Z' = A or U, with the topology of the plane C = ~2; 

here G = {e}. 

(2) Those Z' with G = Z = 7rl (Z) ,  topology of  the cylinder S 1 × R l, and conformally 

equivalent to [ 18] 

A* = A -- {0} or Zar = {z e CI0 < r < Izl < 1}. (2.9) 

(3) All the other surfaces have a non-abelian, fundamental group rq, are compact, and 

topologically homeomorphic to a sphere with g handles (or holes), where g > 1 (g = 

1 corresponds to the torus T 2, which is of  the conformal class fiat). They can be 

represented as union of  tori T = T 2, 

Zg = T#T  # . . . #  T (g times, g > 1), (2.10) 

where # means the connected sum, obtained by removing a little open disc in each torus 

and soldering two of them by the boundary circle [ 19]. 

(4) There remain only non-orientable surfaces; the compact ones are also classified by the 

genus g, and can be obtained by the connected sum of projective planes ~ p 2  = $2/(Z2) 

(antipodal map), 

Z"g = R P z # ~ P  2#-. .# R P  2 (g + 1 times, g > 1). (2.11) 

The case g = 1 is the Klein bottle, of  K = 0 class. 

The homology of these surfaces is easily computed, and it is [ 19] 

X(~'g) = b0 - b l  + b 2  = 1 - 2 g +  1 = 2(1 - g ) ,  (2.12) 
X(Z~tg) = l - - g + 0 =  l - - g ;  o l ( z ~ , l g ) = Z g q - z 2  . 

In all these surfaces we can choose a constant curvature metric, by Riemann uniformiza- 
tion theorem [ 18]. However, as such they cannot be embedded in I~ 3 with the induced metric 

from + + + (Hilbert theorem [16]). 
We shall need the area of  the compact oriented surfaces which might be computed from 

the volume element 

dA = v / ( E G  - F 2) du dv = I sin ~l  du dr.  (2.13) 
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The area and the Euler number are connected through the fundamental Gauss-Bonnet 

formula [ 16] 

X = (1/2zr) f K dA (2.14) 

This will be the key to identify the particular Riemann surfaces. 

3.  G e n u s  f r o m  s o l i t o n  c o n f i g u r a t i o n s  

The solutions of  sine-Gordon equation (1.1) or (2.4) are classified by the topological 

charge (1.4), namely: 

(a) q = 0, the vacuum sector. It contains the vacuum solution 4, = 2~rk, the soliton- 

antisoliton scattering configurations, the soliton-antisoliton bound states (breather 

mode) and combinations thereof. 

(b) q = 4-1; it contains one soliton (resp. antisoliton) ofEq. (1.3), translated and/or boosted, 

plus any solution of  (a) above. 

(c) q arbitrary integer; this is the multisoliton configuration; for example q = + 2  will 

contain two solitons plus any solution of  (a) above; etc. 

Which negative curvature surfaces do these configurations belong to? Let us start with 

the q = 2 two soliton states. The connection with the genus of  the potential surface will 

be made through the Gauss-Bonnet theorem: we can perform an area integration, applying 

(2.13) and (2.14) to Eq. (2.4) sin q~ = a, vq~: 

f Kda=(-1)f Isin*ldudv=(-1)f o.v*dudv 
= (-1)q~ (boundaries). (3.1) 

This is called "Hazzidaki's formula" [16]. Now for the two-soliton configuration it turns 

out that the algebraic sum of the boundary values are just the jump in x = -4-0o at t = 0 

minus the jump in t = 4-00 at x = 0, due to the relation between u, v and x, t (2.5): 

Area = ~ ( x  = +oo ,  t = 0) - q~(x = - o ~ ,  t = 0) 

- {q~(x  = 0,  t = + o ~ )  - ~ ( x  = 0,  t = - o ~ ) } ,  (3 .2 )  

which is just 47r for the two-soliton state (there is no jump in t, as q~(x = 0, t)= const, by 

symmetry): The explicit formula for the two-soliton solution in x, t coordinates is [1,4]: 

q~(x, t) = 4 arctg { - (cosh  yv t ) / v  sinh(yx)}, (3.3) 

where v is the relative velocity and y2 _ (1 - v2) -1 .  

Therefore we are describing a g = 2 surface, according to the integral formula 

X = ( 1 / 2 ~ r ) f K d a = Z ( 1 - - g ) = ( - 1 ) 4 ~ r / 2 7 r ,  g = 2 .  (3.4) 
d 
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The generalization to n = 2v even number of  solitons is immediate,  because again there 

is no jump in t while the jump in x is given by 2zrn: 

2 ( 1 -  g) --- - 2 r r ( 2 v ) / 2 r r  =¢, g = v + l  (v > 0 )  (3.5) 

and it describes the compact  oriented surface of  genus g. The span in O, namely 4re v, 

reflects the "holes" of the surface. This is a satisfactory result. Of course, the integration 

can be performed analytically also. The configuration with 2n antisolitons will presumably 

describe the same surface with changed orientation. 

The correspondence goes along also with the integration parameters; namely we can 

choose three integration constants for each soliton, the center, origin of time and velocity (i.e. 

the three parameters of  the 1 + 1 Poincar6 group). But the moduli space of the surface of  genus 

g is known to be the Teichmiiller space [ 17,18] of  complex dimension (an intuitive derivation 

of  the moduli  space formula for Riemann surfaces is given in the book by Witten et al. [20]) 

Bg = dim Teich (Z'g) = 3(g - 1) = (1/2)3 x 2v = (1/2)  [# real param.] (3.6) 

because g = v + 1. So this is again in agreement. 

We do not have a satisfactory answer for the odd-soliton case, for which the integration 

is ill-defined. If  we maintain (3.4) for any soliton number, i.e. 

- X  ---- n ,~ g = n + 1 for unoriented surfaces, X = 1 - g (3.7) 

and we conjecture that this is true; in this case the soliton will describe the "unoriented" 

pretzel, g = 2. This goes on with the fact that the soliton will be a fermion, and fermions 

are odd under full rotations. Again, the concordance goes also with the moduli  space, for 

which the freedom is now in real dimension [17] 

Bg = 3(g - 1) = # param, of  the n - soln. confign. (3.8) 

There are still other surfaces (Section 2); we conjecture also that the breather mode, i.e. a 

non-trivial solution with q = 0, will correspond to the non-compact case, e.g. to the simply 

connected model A or U. 
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